9,093 research outputs found

    Hamiltonian of a many-electron system with single-electron and electron-pair states in a two-dimensional periodic potential

    Full text link
    Based on the metastable electron-pair energy band in a two-dimensional (2D) periodic potential obtained previously by Hai and Castelano [J. Phys.: Condens. Matter 26, 115502 (2014)], we present in this work a Hamiltonian of many electrons consisting of single electrons and electron pairs in the 2D system. The electron-pair states are metastable of energies higher than those of the single-electron states at low electron density. We assume two different scenarios for the single-electron band. When it is considered as the lowest conduction band of a crystal, we compare the obtained Hamiltonian with the phenomenological model Hamiltonian of a boson-fermion mixture proposed by Friedberg and Lee [Phys. Rev. B 40, 6745 (1989)]. Single-electron-electron-pair and electron-pair-electron-pair interaction terms appear in our Hamiltonian and the interaction potentials can be determined from the electron-electron Coulomb interactions. When we consider the single-electron band as the highest valence band of a crystal, we show that holes in this valence band are important for stabilization of the electron-pair states in the system

    Passaging of a Newcastle disease virus pigeon variant in chickens results in selection of viruses with mutations in the polymerase complex enhancing virus replication and virulence

    Get PDF
    Some Newcastle disease virus (NDV) variants isolated from pigeons (pigeon paramyxovirus type 1; PPMV-1) do not show their full virulence potential for domestic chickens but may become virulent upon spread in these animals. In this study we examined the molecular changes responsible for this gain of virulence by passaging a low-pathogenic PPMV-1 isolate in chickens. Complete genome sequencing of virus obtained after 1, 3 and 5 passages showed the increase in virulence was not accompanied by changes in the fusion protein – a well known virulence determinant of NDV – but by mutations in the L and P replication proteins. The effect of these mutations on virulence was confirmed by means of reverse genetics using an infectious cDNA clone. Acquisition of three amino acid mutations, two in the L protein and one in the P protein, significantly increased virulence as determined by intracerebral pathogenicity index tests in day-old chickens. The mutations enhanced virus replication in vitro and in vivo and increased the plaque size in infected cell culture monolayers. Furthermore, they increased the activity of the viral replication complex as determined by an in vitro minigenome replication assay. Our data demonstrate that PPMV-1 replication in chickens results in mutations in the polymerase complex rather than the viral fusion protein, and that the virulence level of pigeon paramyxoviruses is directly related to the activity of the viral replication complex

    Up-down symmetry of the turbulent transport of toroidal angular momentum in tokamaks

    Full text link
    Two symmetries of the local nonlinear delta-f gyrokinetic system of equations in tokamaks in the high flow regime are presented. The turbulent transport of toroidal angular momentum changes sign under an up-down reflection of the tokamak and a sign change of both the rotation and the rotation shear. Thus, the turbulent transport of toroidal angular momentum must vanish for up-down symmetric tokamaks in the absence of both rotation and rotation shear. This has important implications for the modeling of spontaneous rotation.Comment: 15 pages, 2 figure

    Wigner crystallization in quantum electron bilayers

    Full text link
    The phase diagram of quantum electron bilayers in zero magnetic field is obtained using density functional theory. For large electron densities the system is in the liquid phase, while for smaller densities the liquid may freeze (Wigner crystallization) into four different crystalline phases; the lattice symmetry and the critical density depend on the the inter-layer distance. The phase boundaries between different Wigner crystals consist of both first and second order transitions, depending on the phases involved, and join the freezing curve at three different triple points.Comment: To appear in Europhys. Lett. (11 pages in REVTEX + 2 figures in postscript

    Fluxonic Cellular Automata

    Full text link
    We formulate a new concept for computing with quantum cellular automata composed of arrays of nanostructured superconducting devices. The logic states are defined by the position of two trapped flux quanta (vortices) in a 2x2 blind-hole-matrix etched on a mesoscopic superconducting square. Such small computational unit-cells are well within reach of current fabrication technology. In an array of unit-cells, the vortex configuration of one cell influences the penetrating flux lines in the neighboring cell through the screening currents. Alternatively, in conjoined cells, the information transfer can be strengthened by the interactions between the supercurrents in adjacent cells. Here we present the functioning logic gates based on this fluxonic cellular automata (FCA), where the logic operations are verified through theoretical simulations performed in the framework of the time-dependent Ginzburg-Landau theory. The input signals are defined by current loops placed on top of the two diagonal blind holes of the input cell. For given current-polarization, external flux lines are attracted or repelled by the loops, forming the '0' or '1' configuration. The read-out technology may be chosen from a large variety of modern vortex imaging methods, transport and LDOS measurements.Comment: Featured on the cover page of APL, November 2007 issu

    The split-operator technique for the study of spinorial wavepacket dynamics

    Full text link
    The split-operator technique for wave packet propagation in quantum systems is expanded here to the case of propagating wave functions describing Schr\"odinger particles, namely, charge carriers in semiconductor nanostructures within the effective mass approximation, in the presence of Zeeman effect, as well as of Rashba and Dresselhaus spin-orbit interactions. We also demonstrate that simple modifications to the expanded technique allow us to calculate the time evolution of wave packets describing Dirac particles, which are relevant for the study of transport properties in graphene.Comment: 19 pages, 4 figure

    Superconducting films with antidot arrays - novel behavior of the critical current

    Full text link
    Novel behavior of the critical current density jcj_{c} of a regularly perforated superconducting film is found, as a function of applied magnetic field HH. Previously pronounced peaks of jcj_{c} at matching fields were always found to decrease with increasing HH. Here we found a {\it reversal of this behavior} for particular geometrical parameters of the antidot lattice and/or temperature. This new phenomenon is due to a strong ``caging'' of interstitial vortices between the pinned ones. We show that this vortex-vortex interaction can be further tailored by an appropriate choice of the superconducting material, described by the Ginzburg-Landau parameter κ\kappa. In effective type-I samples we predict that the peaks in jc(H)j_{c}(H) at the matching fields are transformed into a {\it step-like behavior}.Comment: 5 pages, 4 figure
    • …
    corecore